Acta Cryst. (1997). C53, 1621-1622

N-Acetoylphenylhydrazone \dagger

Jayanta Kumar Ray, ${ }^{a}$ Tapan Kumar Mahato, ${ }^{a}$
Kandasamy Chinnakali ${ }^{b} \ddagger$ and Hoong-Kun Fun ${ }^{b}$
${ }^{a}$ Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India, and ${ }^{b}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: hkfun@usm.my

(Received 16 April 1997; accepted 24 June 1997)

Abstract

The phenyl ring and acetoylhydrazone moiety of the title molecule, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$, are individually planar and these planes are nearly perpendicular to each other. The N atom bonded to the phenyl ring exhibits a pyramidal coordination. Both N atoms are involved in $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Acetoylphenylhydrazones are intermediates for dyestuffs and pharmaceuticals. The X-ray structure determination of the title compound, (I), is presented here.

(I)

The mean $\mathrm{C}-\mathrm{C}$ bond length in the phenyl ring is 1.382 (2) \AA. The N 1 atom adopts a planar coordination, whereas the coordination of N 2 is pyramidal. The $\mathrm{C}-\mathrm{N}$ bond lengths are normal. The acetoylhydrazone moiety is planar and nearly perpendicular to the plane of the phenyl ring (dihedral angle 86.27°).
\dagger Alternative name: N^{\prime}-phenylacetohydrazide.
\ddagger On leave from: Department of Physics, Anna University, Chennai 600025 , India.

Fig. 1. The structure of title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

In the crystal, the carbonyl O atoms are involved in bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Centrosymmetrically related molecules are connected by $\mathrm{N} 2-\mathrm{Hl} \cdots \mathrm{O}$ hydrogen bonds and pack as linear chains along the a direction. These molecular chains are interconnected by $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}$ hydrogen bonds.

Experimental

Phenylhydrazine was converted to acetoylphenylhydrazone by treatment with acetic acid in a reaction of the Fischer Indole type (Karmakar, Kar \& Ray, 1997). Single crystals were grown by slow evaporation of a chloroform solution of the compound.

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=150.18$
Orthorhombic
Pbca
$a=8.836(1) \AA$
$b=10.065(1) \AA$
$c=19.071$ (5) \AA
$V=1696.1(5) \AA^{3}$
$Z=8$
$D_{x}=1.176 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 40 reflections
$\theta=5.49-12.42^{\circ}$
$\mu=0.080 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Thin elongated slab $0.90 \times 0.58 \times 0.22 \mathrm{~mm}$
Colourless

Data collection
Siemens $P 4$ diffractometer $\quad \theta_{\max }=27.50^{\circ}$
$\theta / 2 \theta$ scans
$h=-1 \rightarrow 11$
Absorption correction: none $\quad k=-1 \rightarrow 13$
2565 measured reflections $\quad l=-1 \rightarrow 24$
1949 independent reflections
1390 reflections with
$I>2 \sigma(I)$
3 standard reflections every 97 reflections intensity decay: $<3 \%$
$R_{\text {int }}=0.015$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.141$
$S=0.987$
1949 reflections
141 parameters
All H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0943 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$
Extinction correction: SHELXL93
Extinction coefficient: 0.015 (3)

Scattering factors from International Tables for
Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$

$\mathrm{O}-\mathrm{C} 7$	$1.2333(15)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.399(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.330(2)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.402(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$122.53(11)$	$\mathrm{O}-\mathrm{C} 7-\mathrm{N} 1$	$121.75(12)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 6$	$116.07(10)$	$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 8$	$122.39(14)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	$118.95(12)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$115.86(14)$
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{N} 2$	$122.61(12)$		

Table 2. Hydrogen-bonding geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-HINI $\cdots \mathrm{O}^{\prime}$	$0.83(2)$	$2.00(2)$	$2.828(1)$	$177(1)$
N2—HIN2 $\cdots \mathrm{O}^{\prime \prime}$	$0.83(2)$	$2.15(2)$	$2.972(1)$	$174(2)$

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y,-z$; (ii) $-x, 1-y,-z$.

The structure was solved by direct methods and refined by full-matrix least-squares techniques. All H atoms were located from a difference Fourier map and refined isotropically.

Programs used: data collection, cell refinement and data reduction: XSCANS (Siemens, 1994); structure solution and molecular graphics: SHELXTL/PC (Sheldrick, 1990); structure refinement: SHELXL93 (Sheldrick, 1993); geometrical calculations PARST (Nardelli, 1983).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801. KC thanks the Universiti Sains Malaysia for a Visiting Post Doctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1336). Services for accessing these data are described at the back of the journal.

References

Karmakar, A. C., Kar, G. K. \& Ray, J. K. (1997). J. Chem. Soc. Perkin Trans. 1, p. 1991.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1990). SHELXTLPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 1622-1624

1-(p-Chlorophenyl)-5-oxo-3-(2-thienyl)-pyrrolidine-2-carboxylic Acid

Jayanta Kumar Ray, ${ }^{a}$ Bidhan Chandra Roy, ${ }^{a}$ Kandasamy Chinnakali, ${ }^{b} \dagger$ Ibrahim Abdul Razak ${ }^{b}$ and Hoong-Kun Fun ${ }^{b}$
${ }^{a}$ Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India, and ${ }^{b}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: hkfun@usm.my
(Received 10 April 1997; accepted 24 June 1997)

Abstract

The chlorophenyl and thiophene rings of the title molecule, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{3} \mathrm{~S}$, are individually planar. The pyrrolidine ring is in a half-chair conformation. The thiophene ring is disordered. The structure is stabilized

^[\dagger On leave from: Department of Physics, Anna University, Chennai 600 025, India.]

by a three-dimensional network of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ H. . O hydrogen bonds.

Comment

In recent work, we have observed that N-phenyl γ lactam derivatives exhibited Gram-positive and Gramnegative antibacterial activities (Ray, Kar, Roy \& Brahma, 1995). The bioactivity of the γ-lactam derivatives depends on the ability of several proteins to inhibit the cross-linking of the bacterial cell wall (Baldwin, Lynch \& Pitlick, 1991) and this property is controlled by substituents in the γ-lactam ring (Baldwin, Chan, Gallecher \& Otsnka, 1984). In connection with our studies on the synthesis of novel γ-lactam analogues with potential as biological surrogates, we introduced a thiophene ring which can help in activating the γ-lactam system (Roy, Ray \& Kar, 1997). The crystal structure determination of the title compound, (I), one of these derivatives, was carried out in order to elucidate the molecular conformation.

(I)

In general, the bond lengths and angles observed in this structure agree with those in related structures (Sivakumar, Fun, Ray, Roy \& Nigam, 1995a,b), but the unusually long C12-C15 [1.596(4) \AA] and C13C15 [1.522 (6) \AA] distances are probably systematically in error because of the disorder of the thiophene ring (as explained below).

Fig. 1. The structure of title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme. Only the major conformer is shown.

The pyrrolidine ring is in a half-chair conformation, with asymmetry parameter $\Delta C_{2}(C 7)=0.005(2)^{\circ}$ (Nardelli, 1983a). The deviations of atoms C9 and Cl 0 from the plane defined by $\mathrm{N}, \mathrm{C} 7$ and C 8 are -0.204 (4) and 0.260 (3) \AA, respectively. The chloro-

Acta Crustallographica Section C
ISSN 0108-2701 © 1997

